ほんほん

ぼくは「本数寄」なのである

ほんほん54(最終回)

◆慶応義塾大学出版会から「世界を読み解く一冊の本」というシリーズが刊行されている。『旧約聖書』『クルアーン』『三教指帰』『西遊記』『カンタベリー物語』『百科全書』『言海』『伝奇集』『一九八四年』『薔薇の名前』の10冊だ。えっ、たった10冊かよと思うだろうが、その10冊に空海、チョーサー、大槻文彦、エーコが入っているのが絶妙な特色だと思ったほうがいい。ただし原著やその翻訳ではない。それぞれ著者が別にいて、これらを解読している。藤井淳の『三教指帰』を読んだが、なかなかユニークな視点になっていた。
◆千夜千冊では「世界を読み解く一冊」をできるだけ選んできた。これまで書いてきた1800冊の中の300冊から500冊くらいが、そういう本だったと思う。吉本隆明は、本はたいてい自分のかかわりとの関係で読むものだけれど、自分が関心のない本にめぐりあうにはどうすればいいかという問いに対して、それは「書物に含まれている世界」が決めてくれるのだと答えていた。すぐれた本は「書き手が世界をあらわしたくて書いているものだ」というのだ。その通りだろう。
◆ボルヘスは、本は記号の集合体であるけれど、そこに読み手がかかわるとその記号は千変万化に息づいていくと言った。エーコは、本はスプーンやハンマーやハサミ同様に500年前とまったく変わっていない形態のものだけれど、それは「スプーンがあれ以上の形をとれないこと」と同様に、実にすばらしい究極の姿なのであるとみなしていたのだ。
◆たしかに「本」はあの形がいい。四角くて、表紙と裏表紙にページがぎゅっと挟まれて、ちょっと重たげで、本棚に並べると背中が何かを訴えている。これは「物実」(ものざね)もしくは「憑坐」(よりまし)なのだ。
◆ぼくが「本」という形をとったブツにぞっこんになったのは、20代半ばに自分の6畳・3畳のアパートで本棚を手作りしたときあたりからで、そのとき、わずかな蔵書を少しずつカバー自装したせいだった。カバー自装というのは、中身は気にいったのに外見が気にいらない本に適当なカバー材を選んできて、そこにレタリングセットや油性ペンでタイトルなどを付けていったことをいう。物実らしくしておきたかったのだ。これで護法童子が走りまわるようになった。これで「本」と一緒に暮らすようになった。
◆そういうふうになったのは、やっぱり10代に本に夢中になったからで、それがもしギターや算数に夢中になっていたら、別の生き方をしていたのだろうと思う。昆虫学者になっていた可能性もあるし、聴診器や注射器が手放せない診療所に暮らすようになったかもしれない。
◆ぼくは家庭用品や生活用品にからっきし関心がない。自分の部屋にそういうものを揃えたくなかった。もっとはっきり言うと、「生活する」に関心がない。生活は好きな仲間と一緒にいたいという、ただそれだけだ。リラダンとタルホの影響が滲みこんだせいだろう。これがわが生き方だ。だからぼくの日々はいまだにロクな用品に囲まれていない。自動車や電子機器はスタッフに頼っているし、たいていの日々は誰かが介添をしてくれている。つまりは生活オンチなのである。このオンチのせいで生活用品が自分の周辺に不可欠だと思えない。
◆では何が不可欠かというと、それが「本」だった。本が炊飯器で、本が大工道具で、本が食い道楽で、本が旅行で、本が恋愛で、本がうたた寝なのである。そんなことだから、当時から部屋には本だけがふえるだけだったのだ。本以外で大事なのはジャケットとタバコくらい。
◆こんなふうなので、そうとうな読書家ですねえ、さぞかし希覯本や珍本が集まったでしょうねと言われるが、そうなのではない。たしかに読書はするが、たくさんの本を読みたいとは当初から思っていなかった。いまも冊数はカンケーない。「読書するという状態」に、科学や文学や音楽の秘密が隠れていると思っているので、その読書状態をなんとか持続させ拡張させていくための日々をおくることが好きなのだ。だから希覯本はいっさい集めない。文庫本でも十分なのである。
◆もう少し正確に言うと「読むこと」が好きなのだ。もっと正確に言うと「読み」が好きなのだ。さまざまな民族言語による言葉が組み合わさって、それが人麻呂やシェイクスピアやジャン・ジュネやガルシア・マルケスや阿木耀子になってきたということ、その多様性のプロセスと成果を読むことが好きなのだ。
◆これはどちらかといえば、植物や動物の進化を読んでいるのに近い。だから批評したり書評したりするのは、実はほとんど気が向かない。千夜千冊も一度も書評をしようと思って書いてはこなかった。空き番だらけの「本の進化の木」をひとつひとつ埋めているような気分なのだ。
◆ただし、またまた別のことを言うようだが、この文明の流れのなかで、言葉や「読み」が進化してきたなどとは思っていない。人類の思索や表現が進歩してきたとも見ていない。そういう進歩史観はもっていない。むしろ言葉が意味からずれ、何かを隠さざるをえなくなっていく様子や、書くことが「逸脱」をおこしていくのを読むことに、大いなる興味があったのである。
◆つまりは、ぼくの「本好き」は「本数寄」なのである。何かを数寄の状態にしていくための本なのだ。遁世の数寄なのだ。それが70年以上もずうっと続いてきた。千夜千冊はやめられないだろう。また、どこかに本棚を作って進ぜるという仕事も、きっと続くだろう。最近は「本の寺」に関心がある。まったくもって大変なビョーキに罹ったものだ。
◆さて一方、この「ほんほん」コラムはそろそろ「お開き」にしたいと思った。ブックウォッチャーを続けるのもどうかなという気にもなったのだ。別のコラムを始めるかもしれないけれど、どういうものかはわからない。そのときはそのときで、どうぞ御贔屓に。

> アーカイブ

閉じる

新幾何学思想史

近藤洋逸

三一書房 1966

 問題は第5公準である。所はゲッチンゲン大学である。二人の青年数学者が議論をしていた。フリードリッヒ・ガウスとヤーノス・ボヤイだ。二人はユークリッドの第5公準の転覆を謀っていた。
 数学には古来このかた「永久問題」というものがある。幾何学ではコンパスと定規だけをつかって解決しなければならない作図問題の、「角の三等分」「立法倍積」「円積問題」などがある。なかで最も厄介だと思われていたのがユークリッドの第5公準をどう証明するかという問題だった。この難問は2000年にわたって数学者の前に壁のように立ちはだかっていた。ユークリッドはこう書いていた、「与えられた直線の外にある1点を通ってそれに平行な直線はただ1本だけ引くことができる」。
 いわゆる平行線原理とよばれる公準だ。公準とは、それをもとに展開されるすべての叙述が正しく矛盾がおきないように、最初から受け入れられるべき大前提となるものをいう。たしかに2本の平行線の外の1点には、もう1本だけの平行線があるように見える。だからこれは公準たりえる。が、この言い方にはひっかかるものがある。
 平行線の外といったって、うんと離れた1点でもそうなのか。そんなことは調べようがない。そこで5世紀にはすでにビザンティンのプロクロスが、この命題は公準からはずしたほうがいいのではないかとのべていた。しかし、疑問はそこで凍結してしまったのである。1500年にわたって、この難問に挑みかかる者はいなくなったのだ。少なくとも、ガウスとボヤイにはそう見えた。そこで二人は別々に、この公準の転覆を画すことになる。これが非ユークリッド幾何学の誕生にあたる。
 実際には、この公準に挑んだ者は二人の前にいた。数学史がそれを浮上させたのだ。17世紀のフランシスコ修道会のジェロニモ・サッケーリである。また、ガウスとボヤイのほかに同じ挑戦をした青年がカザン大学にいた。ニコライ・ロバチェフスキーだった。いったいこの4人はどのようにユークリッド幾何学を覆したのか。

 ぼくの原稿デビュー作はペンネームで書いた「十七歳のための幾何学」である。東販に頼まれて60万部発行していた「ハイスクールライフ」というタブロイド新聞に書いた。高校生のための読書新聞といった趣向のメディアで、全国の書店で無料でばらまかれていた。そのころ高校生だった金井美恵子や田中優子はこの奇妙な新聞のことをヴィヴィッドにおぼえてくれている。
 九段新聞や早稲田大学新聞のころから原稿は書いていたのだが、無署名だった。それがペンネームであれ署名をつけて書く気になったのは「十七歳のための幾何学」というタイトルが自分で気にいったからだった。中身は非ユークリッド幾何学案内といった程度のもので、何も自慢できるものはないのだが、しばらくして稲垣足穂が「あれは松岡正剛でしょう、あんなシャレたものは他には書けません」という葉書を送ってきてくれた。
 非ユークリッド幾何学の冒険は、数学史のなかでもぼくがいちばん興奮したところ、サッケーリ、ランベルト、ロバチェフスキー、ボヤイ、ガウスというふうに進んで、さらにリーマンのところで大きく展開していく構想と仮説と論証のサーカスは、当時のぼくには譬えようのない斬新な精神幾何学のアクロバットのように思えていたので、これをこそ17歳の高校生にプレゼントしようと思ったのだ。とくにロバチェフスキーとガウスに耽溺し、その後はガウスの数学全般に嵌まっていった。本書はそのときのタネ本のひとつで、初版は昭和19年だからぼくが生まれた年になる。

 数学史というもの、実はなかなか名著がない。ぼくが学生のころに出回っていたストルイクの『数学の歴史』やクラインの『数学の文化史』は、いずれも進歩主義史観とでもいうものが行間をはみだしていて、それをバナールの『歴史における科学』やメイスンの『科学の歴史』にあてはめて読んでみると、どうも数学が特異な位置を占めすぎることになって、あやしい。といってワイルダーの『数学の文化人類学』や一世を風靡したホグベンの『数学の世界』では焦点が拡散して、やたらに大きな傘をかぶせられているようで体にぴったりしたシャツやジーンズを着服したような気分にならない。
 詳細きわまりないブルバッキの専門的数学史はあるのだが、これは素人には手が負えない。それに幾何学の香りがしない。ぼくは中学のころから幾何学派だったのだ。困っていたところで読んだのが近藤洋逸が旧著を改めて書きなおした本書だった。一読、哲学の香りがして沈丁花に酔ったような気分になった。

 著者は田辺元の弟子にあたる。数学を専門としたけれど、出所は田辺哲学だ。
 田辺哲学がどういうものであるかは話しはじめるとキリがなくなるが、「絶対無即愛」や「死復活」や「実存協同」といったそうとうに独自の論理に達した現象学者として、また恩師の西田幾多郎の哲理からの脱出を「懴悔道」において試みた哲人として、さらにはつねに「友愛」を説いたヒューマニストとして、きわめて難解かつ慈愛に満ちた巨人のイメージがある。ただ日本人は、フランス現代思想にはほいほい屈しても、自身の日本哲学の前哨たるべき田辺哲学をほとんど受容しようとはしてこなかった。それでも最近は中沢新一君が『フィロソフィア・ヤポニカ』を書いて、ついに田辺哲学の今日的解釈を柔らかく敢行して、いささかヴェールを剥いだ。ドゥールーズやガタリこそ田辺元を読むべきだったという見方は、もっと評判になってもいい。
 近藤洋逸はそういう田辺の弟子なのである。
 だから本書に香りがあるのは当然だった。また、田辺がもともとは数学者をめざしていたこと、途中に微積分のテクニックに窮して数学をあきらめたものの、一貫して哲学には数理が必要であるという姿勢を崩さなかったこと、またフライデルベルクにおいてフッサールやハイデガーに学んで、そこに科学哲学の限界を感じたことなどを知ってみれば、近藤が田辺哲学の延長に『新幾何学思想史』を書いたことはとくに驚くにあたらない。これは生まれるべくして生まれた一冊だった。

 ところで話をまたぼくの青春期に戻すことにするが、「十七歳のための幾何学」を書いたのち、ぼくはリーマン幾何学から一方ではミンコフスキー時空幾何学のほうに進み、他方ではクラインの多様体幾何学のほうに降りていって、「遊」創刊号にクラインの提案を素材にした「エルランゲン・プログラム事件」を書いたりした。
 このころの熱中はいま憶うと尋常ではなかった。どうしてこんなに没頭できたかというほどに数学熱に浮かされていた。これはさきほどもちょっと書いたが、ガウスのせいなのだ。ガウスが天才であったことはいまさら言うまでもない。1796年の18歳のときに「永久問題」のひとつであった定規とコンパスだけで十七角形の作図法を発見するほどだ。
 しかしガウスが真に凄かったのは、あらゆる数学領域を連続的に横断していったことにある。十七角形作図法にしても、これを16次方程式の2次冪根だけの解明に読み替えて代数的に読み解いた。この「解釈の編集的変換」ともいうべきを数学の方法ではなく方法の数学として確立しつづけたところが凄かった。
 だいたいガウスは少年時代のギムナジウムでは数学より古典学が好きだった。ゲッチンゲン大学に入ったときも数学の講義はそっちのけで言語学に夢中になっている。のみならず、ここがぼくの大のお気に入りなのだが、測地学や天文学をはずさなかった。ガウスにとってはそこに軌道と分布の痕跡があるのなら、すべてが数学的対象になったのだ。そのガウスが墓碑銘に「少数なれど熟したり」と書いたことはなかでもぼくのガウス論の核心になっている。

ガウスの十七角形作図法

ガウスの十七角形作図法

 われわれはいま非ユークリッド時空の一端にいる。それがわれわれの世界である。この世界では平行線は1点において何本だって引けるし、何度でも交わることができる。いや平行線がどんどん開いてしまうこともある。のみならずここでは、三角形の内角の和は180度をこえることもあれば(ロバチェフスキー・モデル)、180度よりずっと小さいときもある(リーマン・モデル)。
 その非ユークリッド時空のごくごく特殊な空間がユークリッド空間なのである。そこではさすがに第5公準が成り立っているけれど、それは画用紙をせいいっぱい広げた人工空間だと思ったほうがいい。地球にジオイド地球を想定してわれわれはやっと地球を球体とか楕円球に見立てているように、ユークリッド空間はパソコンの原則平面に描いた"設計"上の空間なのである。
 そのように考えないかぎり幾何学は証明できない。サッケーリもボヤイもガウスもロバチェフスキーも、そのことを確信した。17歳の少年はまずこのことを知ってから大人になるべきだ。

附記¶ここでとりあげた参考図書は以下の通り。D・ストルイク『数学の歴史』(みすず書房)、モリス・クライン『数学の文化史』(河出書房新社)、J・D・バナールの『歴史における科学』(みすず書房)、メイスン『科学の歴史』(岩波書店)、レイモンド・ワイルダー『数学の文化人類学』(海鳴社)、ランスロット・ホグベン『数学の世界』(河出書房新社)、リワノワ『新しい幾何学の発見』(東京図書)、中沢新一『フィロソフィア・ヤポニカ』(集英社)。なかでバナールにはどれほどお世話になったか。ガウスについては、ごく最近になってわかりやすい次の2冊が刊行された。シモン・ギンディキン『ガウスが切り開いた道』(シュプリンガー東京)、高橋正仁『ガウスの遺産と継承者たち』(海鳴社)。