才事記

ゼビウスと横須賀功光

ぼくの半生はさまざまな才能に驚いてきたトピックで、髪の生え際から足の親指まで埋まっている。小学校の吉見先生との一緒の遊びや南海ホークスの飯田のファースト守備に驚き、藤沢秀行の碁の打ち方や同志社大学の平尾ラグビーに驚き、電子ゲーム「ゼビウス」のつくりや井上陽水のシンガーソングぶりに驚き、亀田製菓の数々の「サラダあられ」や美山荘の中東吉次の摘草料理に驚き、横須賀功光が撮った写真やコム・デ・ギャルソンの白い男物シャツに驚いた。

ファミコンゲーム《ゼビウス》

いずれも予告なし。ある日突然に出会ってたまげたのだ。これらの代わりにマイルス・デイヴィスを聴いたときとかヴィトゲンシュタインを最初に読んだときとか、そういうものを挙げてもいいのだが、できればナマっぽく体験したことと向き合ったほうがいいので、こんな例にした。

まずは何に驚いたかということが大事なのだが、それにとどまってはいけない。そのときこちらを襲ってきた唐突な感動が、その日その場のシチュエーションや当日の体調や別の記憶との共属関係とともに新たに残響してくることが、もっと大事だ。

われわれは当然のことながら、幼児期には何にでも驚いてきた。子供になってからもアサガオの開花やセミの羽化に出会ったこと、土中の化石やホタルの点滅を初めて見たのは、忘れられない体験だ。ただし、これら植物や動物を相手にした感動はのちにも体験可能になる率が高いけれど、それにくらべて誰かがもたらしてくれるものは、その時その場にかぎられることが多い。

この誰かによる感動とどう付き合えるかということから、世の「才能」というものへの陥入がおこっていく。

感動や共感について心すべきことは、出会って驚いた瞬間の感動というか逆上といったものを、その後どのように保持できる状態にしておけるのか、またその感動をここぞというときに脳裏から自在にリコール(リマインド)できるようにしておけるのかということにある。

感動も共感も誰にだっていろいろの機会におこるものだけれど、それをどこかに転移しても(時と場所とメディアを移しても)、その鮮やかさをそこそこ賞味できるかということが、キモなのである。

たとえば、誰かの講演を聞いて、おおいに痺れたとする。内容にも共感したとする。では、この感動をどのように保持するかなのである。またどのように再生するかなのである。これがけっこう難しい。

驚きをもたらしてくれたものには、当然にそれをあらわした当事者の才能が光っている。横須賀のモノクロ写真や陽水の歌においてはあきらかに格別の「個の才能とスキル」が発揮されたのだし、「ゼビウス」や「サラダおかき」には開発チームの「集団的で統合的な才能」が結実したのである。しかし、その秘密に分け入るには、たくさんの分析や推理が必要だ。

たとえば第1に、その才能が開花するにあたっては、少年少女期や青春期に何をめざしていたのかということがある。栴檀は双葉より芳しと言うけれど、小さいころの能力の芽生えがそのまま開花することは少ない。なんらかの深堀りやエクササイズが生きたはずなのだ。横須賀や陽水はそこをどうしたのか、これは覗きにいく必要がある。

第2に、その才能開花に預かったメンターや技の協力者やチームはどういうものだったのかということがある。ゼビウスはどのようにチームを組んだのか。一人で独創をはたしたかに見える棟方志功だって、実はたくさんのメンターがいた。志功はそのメンターに強く影響されたいと思った。指導者や師や影響者の存在は、メンターの資質に選択肢があるというより、むしろその師に掛けたほうの強度がモノを言う。

のちのちそんな話もしたいと思うけれど、ぼくの場合はいったん選んだ影響者のことを、その後もまったく疑うことがなかった。

また第3に、その才能によってどのように同時代の競争を抜きん出たのか、そこにはどんな時代の水準がわだかまっていたのかということも才能分析の対象になる。セザンヌが人気があったときとカンディンスキーが「青騎士」として登場したときとウォーホルがシルクスクリーンで登場したときとでは、時代のアイコンも驚きの関数も違っていた。そのため、その時々の勝負手がちがってくる。こういうときは、自分で才能を懸崖に立たせる必要がある。イチかバチかに向かう必要がある。

横須賀功光《射》

横須賀功光が颯爽と出現したときは、日本の写真界はキラ星がひしめいていた。ファッション写真や広告写真で腕を磨いた横須賀は、ここで全裸の若者をモデルに『射』というモノクローム作品に挑んだ。若者が壁に向かって跳び移ろうとする肉体を、撮ってみせたのだ。ライティングも絶妙だった。誰も見たことがない写真だった。

第4に、才能開花のためのエクササイズやレッスンや機材はどういうものであったかということがある。棟方志功のように「板と刀」だけが武器だということもあるけれど、多くの場合、才能開花にはいくつもの道具や機材が関与する。レンブラントの版画には日本から取り寄せた和紙が、プレスリーのギターにはマイクやアンプの性能が、アンセル・アダムスのf/64のカメラにはレンズやプリントペーパーの質がかかわっていた。

顔料やコンピュータをどう使うか、録音機やプロジェクターをどうするか、釉薬や鉄材は何を入手するか。テクノロジーは才能の信頼すべき友人なのである。このことも才能にまつわっている。

ぼくは執筆には、いまだにシャープの「書院」を使っている。発売されていないだけでなく、いまや修理ができる工房もない。

第5に、なぜその当事者たちは「ゾーン」に入れたのかということだ。才能に自信がもてるには、どこかでゾーン体験がいる。ゾーンに入るとは、予想を超えるノリに入ったことをいう。俗にエンドルフィンやアドレナリンが溢れることだ。

しかしながら、為末大が言っていたけれど、あるときゾーンに入っていけたとしても、その継続は必ずしもおこらないし、その手前でそうなるとはほぼ気が付かないものなので、そこをどうするか。そのため、アスリートの多くはゾーンを思い描いたイメージ・トレーニングをしたり、ルーチンを確実なものにしていくということをする。

けれども意外なことだろうが、スポーツ以外ならいくらだってゾーン体験は引き寄せることが可能なのである。一番有効なのは誰かとコラボすることだ。スポーツは必ずチームや相手がいてスコアを争っているのだが、他の才能開花は一人で自分の才能の発揮に悩む。そういうときは、誰かとともにその才能を試すのがいい。編集能力の発揮なら、学習仲間とともにさまざまなことを試みたり、メディアを変えたりするといい。

たんに感動したといっても、そこにはざっと以上のようなことが準備されていたり、参集していたのである。これらを無視しては才能は発揮できないし、才能を云々することも叶わない。

しかし、ここまでの話は、ぼくがこのコラムであきらかにしたいことの範疇のうちのまだまだ一端にすぎないのである。どちらかというと、ここまでは才能議論の準備やアプローチに必要なことで、実は序の口の話なのだ。クロート向きとは言えない。
 才能に痺れたのちに重視してみたいのは、驚かされた相手の才能は当方(受容者)にどのように伝播されたのか。その後はどうなっていったのか、ここを抉るということだ。

ラグビーの平尾やシンガソングライターの陽水の才能は、ほおっておけばすぐに「スポーツの才能」とか「音楽の才能」というふうに一般化されてしまう。また他のプレイヤーとの比較分布にマッピングされていく。ジャンクフードや料理の個別の感動は、たちまち無数の「おいしさランク」にいいねボタンとして回収されて、平べったくなっていく。

ゼビウスはその後は無数の電子ゲームが乱舞していったので、おそらくいま遊んでみても当初の感動は色褪せているにちがいない。

愛用の”お古” シャープ《書院》

コム・デ・ギャルソンの黒い紐付きの白シャツはいまでも気にいってはいるけれど(イッセイのスタンドカラーの白シャツなどとともに)、それははっきりいって「お古」なのである。

が、大事なのはこの「お古」との付き合いのうちにも、あのときの感動とそれをもたらした才能とを交差させられるかどうかということなのだ。

そもそもプラトンも人麻呂もバッハもゴッホも複式夢幻能も、これらはすべて「お古」なのである。「お古」だからこそ、何度もプラトンを読みなおしたり能楽を見なおしたりするのだが、そしてそれで少しは自分が感動した才能の位置や重みに気がつくこともあるし、少しは「お古」を脱したと感じるのだけれど、これでは甘いままになる。それよりむしろもっと「お古」を相手に才能と向き合うべきなのである。「お古」をバカにしてはいけない。

これは思うに、感動は転移しつつあるあいだも(AからBに、BからCやDに)それなりの主張をしているはずなのだから、その転移のなかでの様変わりな変容も捉えておいたほうがいいだろうということだ。ぼくが何を一番鍛えてきたかといえば、おそらくはこの「お古」をいつも甦らせる状態で自分の編集力をリマインドしたりリコールできるかということだった。

感動や驚嘆には才能の楽譜やレシピが刻まれている。ぼくの編集力はそのことをヴィヴィッドな状態でホールディングしたり別の場所にキャリングする(移行させる)ことを、試行錯誤をくりかえしながらも何度も試みることで、そこそこ鍛えてきたように思う。ただし、そこにはいろいろの秘伝もある。そのあたりのこと、おいおい話してみたい。

> アーカイブ

閉じる

新幾何学思想史

近藤洋逸

三一書房 1966

 問題は第5公準である。所はゲッチンゲン大学である。二人の青年数学者が議論をしていた。フリードリッヒ・ガウスとヤーノス・ボヤイだ。二人はユークリッドの第5公準の転覆を謀っていた。
 数学には古来このかた「永久問題」というものがある。幾何学ではコンパスと定規だけをつかって解決しなければならない作図問題の、「角の三等分」「立法倍積」「円積問題」などがある。なかで最も厄介だと思われていたのがユークリッドの第5公準をどう証明するかという問題だった。この難問は2000年にわたって数学者の前に壁のように立ちはだかっていた。ユークリッドはこう書いていた、「与えられた直線の外にある1点を通ってそれに平行な直線はただ1本だけ引くことができる」。
 いわゆる平行線原理とよばれる公準だ。公準とは、それをもとに展開されるすべての叙述が正しく矛盾がおきないように、最初から受け入れられるべき大前提となるものをいう。たしかに2本の平行線の外の1点には、もう1本だけの平行線があるように見える。だからこれは公準たりえる。が、この言い方にはひっかかるものがある。
 平行線の外といったって、うんと離れた1点でもそうなのか。そんなことは調べようがない。そこで5世紀にはすでにビザンティンのプロクロスが、この命題は公準からはずしたほうがいいのではないかとのべていた。しかし、疑問はそこで凍結してしまったのである。1500年にわたって、この難問に挑みかかる者はいなくなったのだ。少なくとも、ガウスとボヤイにはそう見えた。そこで二人は別々に、この公準の転覆を画すことになる。これが非ユークリッド幾何学の誕生にあたる。
 実際には、この公準に挑んだ者は二人の前にいた。数学史がそれを浮上させたのだ。17世紀のフランシスコ修道会のジェロニモ・サッケーリである。また、ガウスとボヤイのほかに同じ挑戦をした青年がカザン大学にいた。ニコライ・ロバチェフスキーだった。いったいこの4人はどのようにユークリッド幾何学を覆したのか。

 ぼくの原稿デビュー作はペンネームで書いた「十七歳のための幾何学」である。東販に頼まれて60万部発行していた「ハイスクールライフ」というタブロイド新聞に書いた。高校生のための読書新聞といった趣向のメディアで、全国の書店で無料でばらまかれていた。そのころ高校生だった金井美恵子や田中優子はこの奇妙な新聞のことをヴィヴィッドにおぼえてくれている。
 九段新聞や早稲田大学新聞のころから原稿は書いていたのだが、無署名だった。それがペンネームであれ署名をつけて書く気になったのは「十七歳のための幾何学」というタイトルが自分で気にいったからだった。中身は非ユークリッド幾何学案内といった程度のもので、何も自慢できるものはないのだが、しばらくして稲垣足穂が「あれは松岡正剛でしょう、あんなシャレたものは他には書けません」という葉書を送ってきてくれた。
 非ユークリッド幾何学の冒険は、数学史のなかでもぼくがいちばん興奮したところ、サッケーリ、ランベルト、ロバチェフスキー、ボヤイ、ガウスというふうに進んで、さらにリーマンのところで大きく展開していく構想と仮説と論証のサーカスは、当時のぼくには譬えようのない斬新な精神幾何学のアクロバットのように思えていたので、これをこそ17歳の高校生にプレゼントしようと思ったのだ。とくにロバチェフスキーとガウスに耽溺し、その後はガウスの数学全般に嵌まっていった。本書はそのときのタネ本のひとつで、初版は昭和19年だからぼくが生まれた年になる。

 数学史というもの、実はなかなか名著がない。ぼくが学生のころに出回っていたストルイクの『数学の歴史』やクラインの『数学の文化史』は、いずれも進歩主義史観とでもいうものが行間をはみだしていて、それをバナールの『歴史における科学』やメイスンの『科学の歴史』にあてはめて読んでみると、どうも数学が特異な位置を占めすぎることになって、あやしい。といってワイルダーの『数学の文化人類学』や一世を風靡したホグベンの『数学の世界』では焦点が拡散して、やたらに大きな傘をかぶせられているようで体にぴったりしたシャツやジーンズを着服したような気分にならない。
 詳細きわまりないブルバッキの専門的数学史はあるのだが、これは素人には手が負えない。それに幾何学の香りがしない。ぼくは中学のころから幾何学派だったのだ。困っていたところで読んだのが近藤洋逸が旧著を改めて書きなおした本書だった。一読、哲学の香りがして沈丁花に酔ったような気分になった。

 著者は田辺元の弟子にあたる。数学を専門としたけれど、出所は田辺哲学だ。
 田辺哲学がどういうものであるかは話しはじめるとキリがなくなるが、「絶対無即愛」や「死復活」や「実存協同」といったそうとうに独自の論理に達した現象学者として、また恩師の西田幾多郎の哲理からの脱出を「懴悔道」において試みた哲人として、さらにはつねに「友愛」を説いたヒューマニストとして、きわめて難解かつ慈愛に満ちた巨人のイメージがある。ただ日本人は、フランス現代思想にはほいほい屈しても、自身の日本哲学の前哨たるべき田辺哲学をほとんど受容しようとはしてこなかった。それでも最近は中沢新一君が『フィロソフィア・ヤポニカ』を書いて、ついに田辺哲学の今日的解釈を柔らかく敢行して、いささかヴェールを剥いだ。ドゥールーズやガタリこそ田辺元を読むべきだったという見方は、もっと評判になってもいい。
 近藤洋逸はそういう田辺の弟子なのである。
 だから本書に香りがあるのは当然だった。また、田辺がもともとは数学者をめざしていたこと、途中に微積分のテクニックに窮して数学をあきらめたものの、一貫して哲学には数理が必要であるという姿勢を崩さなかったこと、またフライデルベルクにおいてフッサールやハイデガーに学んで、そこに科学哲学の限界を感じたことなどを知ってみれば、近藤が田辺哲学の延長に『新幾何学思想史』を書いたことはとくに驚くにあたらない。これは生まれるべくして生まれた一冊だった。

 ところで話をまたぼくの青春期に戻すことにするが、「十七歳のための幾何学」を書いたのち、ぼくはリーマン幾何学から一方ではミンコフスキー時空幾何学のほうに進み、他方ではクラインの多様体幾何学のほうに降りていって、「遊」創刊号にクラインの提案を素材にした「エルランゲン・プログラム事件」を書いたりした。
 このころの熱中はいま憶うと尋常ではなかった。どうしてこんなに没頭できたかというほどに数学熱に浮かされていた。これはさきほどもちょっと書いたが、ガウスのせいなのだ。ガウスが天才であったことはいまさら言うまでもない。1796年の18歳のときに「永久問題」のひとつであった定規とコンパスだけで十七角形の作図法を発見するほどだ。
 しかしガウスが真に凄かったのは、あらゆる数学領域を連続的に横断していったことにある。十七角形作図法にしても、これを16次方程式の2次冪根だけの解明に読み替えて代数的に読み解いた。この「解釈の編集的変換」ともいうべきを数学の方法ではなく方法の数学として確立しつづけたところが凄かった。
 だいたいガウスは少年時代のギムナジウムでは数学より古典学が好きだった。ゲッチンゲン大学に入ったときも数学の講義はそっちのけで言語学に夢中になっている。のみならず、ここがぼくの大のお気に入りなのだが、測地学や天文学をはずさなかった。ガウスにとってはそこに軌道と分布の痕跡があるのなら、すべてが数学的対象になったのだ。そのガウスが墓碑銘に「少数なれど熟したり」と書いたことはなかでもぼくのガウス論の核心になっている。

ガウスの十七角形作図法

ガウスの十七角形作図法

 われわれはいま非ユークリッド時空の一端にいる。それがわれわれの世界である。この世界では平行線は1点において何本だって引けるし、何度でも交わることができる。いや平行線がどんどん開いてしまうこともある。のみならずここでは、三角形の内角の和は180度をこえることもあれば(ロバチェフスキー・モデル)、180度よりずっと小さいときもある(リーマン・モデル)。
 その非ユークリッド時空のごくごく特殊な空間がユークリッド空間なのである。そこではさすがに第5公準が成り立っているけれど、それは画用紙をせいいっぱい広げた人工空間だと思ったほうがいい。地球にジオイド地球を想定してわれわれはやっと地球を球体とか楕円球に見立てているように、ユークリッド空間はパソコンの原則平面に描いた"設計"上の空間なのである。
 そのように考えないかぎり幾何学は証明できない。サッケーリもボヤイもガウスもロバチェフスキーも、そのことを確信した。17歳の少年はまずこのことを知ってから大人になるべきだ。

附記¶ここでとりあげた参考図書は以下の通り。D・ストルイク『数学の歴史』(みすず書房)、モリス・クライン『数学の文化史』(河出書房新社)、J・D・バナールの『歴史における科学』(みすず書房)、メイスン『科学の歴史』(岩波書店)、レイモンド・ワイルダー『数学の文化人類学』(海鳴社)、ランスロット・ホグベン『数学の世界』(河出書房新社)、リワノワ『新しい幾何学の発見』(東京図書)、中沢新一『フィロソフィア・ヤポニカ』(集英社)。なかでバナールにはどれほどお世話になったか。ガウスについては、ごく最近になってわかりやすい次の2冊が刊行された。シモン・ギンディキン『ガウスが切り開いた道』(シュプリンガー東京)、高橋正仁『ガウスの遺産と継承者たち』(海鳴社)。